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Abstract
1. Management of animal populations requires spatially explicit knowledge of move-

ment corridors, such as those used during seasonal migrations. Global Positioning 
System (GPS) tracking data allow for mapping of corridors from directly observed 
movements, but such tracking data are absent for many populations.

2. We developed a novel statistical corridor modelling approach that predicts 
movement corridors from cost- distance models fit directly to migration track-
ing data. Unlike existing predictive approaches, this does not require the ad hoc 
transformation of habitat suitability surfaces into resistance surfaces. We tested 
the ability of the approach to recover parameters used to generate simulated 
movements. We then used GPS data from three migrating mule deer Odocoileus 
hemionus herds in Idaho and Wyoming to model corridors as a function of eleva-
tion, slope, aspect, percent shrub, date of peak green- up, snow- off date and 
human footprint. We assessed the predictive ability of the fitted models using 
validation tracks from the same herd as well as from the other herds.

3. The approach reproduced parameters used to generate the simulated move-
ments, predicted the corridors used by migratory populations, and described the 
direction, magnitude and confidence levels of the effects of environmental vari-
ables on corridors. Within- herd validation indicated that fitted corridor models 
are more accurate at predicting migration corridors than null models, and cross- 
herd validation indicated that fitted models for some herds accurately predicted 
the observed migrations of other herds.

4. In addition to the practical benefit of mapping corridors for management, our 
statistical corridor modelling framework sets the stage for evaluating funda-
mental questions about the fitness trade- offs, navigation, learning, fidelity and 
movement constraints that influence migratory and other corridor- generating 
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1  |  INTRODUC TION

The diversity of animal movements is declining worldwide, and we 
need new and better tools to understand which movements are 
essential and how to best conserve them (Doherty et al., 2021; 
Tucker et al., 2018). Mapping animal movement corridors is central 
to addressing this challenge; this task is undertaken by a number 
of ecological disciplines, including migration ecology, movement 
ecology, landscape ecology, and conservation biology and plan-
ning. Researchers often map corridors directly from observed 
movement tracks using utilization distributions, linear interpo-
lations or other approaches; this is particularly true of migration 
ecologists (LaPoint et al., 2013; Sawyer et al., 2009). Alternatively, 
corridors are mapped using predictive modelling approaches, 
which map corridors as a function of environmental factors. 
Examples of predictive models include cost- distance models, cir-
cuit theory and agent- based simulations (Adriaensen et al., 2003; 
McRae et al., 2008; Oloo et al., 2018). Unlike corridor maps made 
directly from observed movements, predictive corridor models can 
be applied to areas for which movement data are not available, and 
provide inference about how the physical environment shapes cor-
ridors. These aspects make predictive modelling an attractive ad-
ditional approach for modelling both migratory and non- migratory 
movement corridors.

Cost distance and circuit theory, the dominant predictive ap-
proaches, traditionally have relied on inverting and transforming 
habitat suitability scores from resource selection functions to gen-
erate the cost or resistance values used in mapping corridors (Zeller 
et al., 2012). The inherent subjectivity and uncertainty in cost sur-
face parameterization has long been a vexing issue for corridor 
modellers (Beier et al., 2008, 2009; Keeley et al., 2017). Two im-
portant developments in connectivity modelling include the use of 
step, integrated step or path selection functions (Avgar et al., 2016; 
Zeller et al., 2016), and using location data only from periods of di-
rected movement (Abrahms et al., 2017; Zeller et al., 2014), as these 
approaches better characterize movement behaviour. However, 
these approaches still rely on ad hoc transformations of selection 
coefficients into the resistance surfaces used in cost- distance or 
circuit theory algorithms. As a result, recent work has shown that 
transformations of habitat suitability scores, even when drawn from 
step selection functions, are often poor predictors of connectiv-
ity (Brennan et al., 2018; Keeley et al., 2017). Researchers relying 
on genetic rather than telemetry data have instead been able to 

optimize resistance parameters directly, bypassing this issue (Hanks 
& Hooten, 2013; Peterman, 2018).

A statistical corridor modelling framework is needed to rigor-
ously quantify the influence of environmental variables on move-
ments and enable corridor prediction in areas with insufficient 
tracking data for empirical corridor modelling. Related studies have 
used maximum likelihood or Bayesian techniques to directly fit 
cost- distance models to dispersal events (Graves et al., 2014) and 
circuit theory models to genetic distance (Hanks & Hooten, 2013; 
Peterman, 2018), but such model fitting approaches are lacking 
for movement tracks. In this paper, we introduce a statistical cost- 
distance corridor modelling approach based on maximum likelihood 
for fitting corridor models to animal tracking data. We used mathe-
matical optimization to identify which environmental covariates best 
predict the movement tracks of migrating animals, without relying 
on the intermediate step of building and transforming resource or 
step selection models. We used simulations and empirical case stud-
ies with mule deer Odocoileus hemionus migrations to illustrate and 
validate our approach. Although we focused on the migratory move-
ments of ungulates, the method is readily applicable to migratory 
taxa across the globe, including other mammals, birds and marine 
species. It is also applicable to modelling non- migratory directed 
movements, such as those made during dispersal events or between 
discrete habitat patches within a home range.

2  |  MATERIAL S AND METHODS

2.1  |  Modelling objective

Our motivating objective was to use the observed Global Positioning 
System (GPS) tracks of migrating animals to model migratory routes 
as a function of environmental variables, and then to use these 
models to generate predictions of migration corridors. We sought 
to model the spatial route taken by the animal during its migration, 
and not the amount of time the animal spends in locations along the 
route. This makes the quantity we modelled different from com-
monly used spatial point process, species distribution, or resource 
selection or utilization models, which model probability of occur-
rence, density of observations or habitat selection as a function 
of the absolute or relative amount of time spent in different areas 
(Aarts et al., 2012; Johnson et al., 2013; Northrup et al., 2021). In 
addition, our objective was distinct from that of correlated random 

behaviour. Models of predictive corridors can inform management and planning 
for the conservation of migrations across taxa, including the potential restora-
tion of corridors. Our corridor modelling approach is also readily applied to non- 
migratory animal movements.

K E Y W O R D S
corridor ecology, corridor prediction, cost- distance modelling, maximum likelihood, migration 
ecology, movement ecology, optimization, statistical corridor modelling
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walk and related movement models, which are commonly used 
to characterize the step length and turn angle distributions in the 
movement trajectories of individual animals and their relationship to 
utilization distributions, space use, behavioural state or home range 
dynamics (Calabrese et al., 2016; Gurarie et al., 2016).

The custom R functions used to fit the models are available as a 
supplement to this manuscript (see Data Availability), and key calcu-
lations are illustrated step- by- step in Figure 1.

2.2  |  The statistical corridor model

Animal movements along a corridor can be characterized as out-
comes of a point process where the probability of moving through 
a location C is a function of how much more distance is involved in 
moving through C than the distance needed to take the most direct 
route between corridor endpoints A and B. In a theoretical, homo-
geneous landscape where movement costs are only influenced by 
Euclidean distance, the most direct, least costly route between the 
corridor endpoints is the line segment between the endpoints, AB. 
The degree to which a movement through C deviates from AB can be 
measured by the residual or additional distance, d, needed to move 
through C instead of using the most direct route.

2.3  |  The cost- distance model

In real, heterogeneous landscapes, the environment shapes the 
costs and benefits of movement, so we used cost- distance modelling 
to account for these influences. Cost- distance corridor models are 
appropriate analyses for modelling migrations because they require 
predetermined start and endpoints, such as the seasonal ranges that 
define the start and end of migratory movements (Beier et al., 2008). 
Cost- distance calculations weight Euclidean distance by the degree 
to which the environment impedes or facilitates movement between 
a focal pixel and its neighbouring pixel.

If the data we have are a movement track t, consisting of an or-
dered series of GPS locations with index i = 1, … , npoints, collected 
from a single animal migrating in one direction between its seasonal 
ranges, then the first and last locations in the ordered series corre-
spond to the endpoints A and B, respectively, from our Euclidean 
example above. Applying Equation 1 to every pixel of the landscape 
and recasting the variables in cost- distance terms, we calculated ras-
ter Dt, the additional cost- distance surface given the endpoints of 
track t. We did this by calculating the quantities AC and BC as raster 
surfaces using Dijkstra's algorithm, as implemented by the accCost() 
function from the gdistance package in R (Adriaensen et al., 2003; 
van Etten, 2018). The pixels of Dt represent the lowest additional 
distance (in cost- distance units) of using a pixel instead of the least- 
cost path to move between the migration endpoints (Figure 1). The 
additional cost distance at each point i in track t is dti, a value that can 
be extracted from raster Dt.

To implement Dijkstra's algorithm, we transformed the gridded 
landscape into a graph in which each pixel is connected to each of 
16 (King's and Knight's moves) neighbours by an edge. The cost dis-
tance of an edge is the ratio of the geographical length of the edge 
to the conductance value, g, of the environmental attributes of the 
edge, x.

The conductance value, g, is the inverse of cost or resistance; there 
are computational advantages to using conductance instead of cost 
in these calculations (van Etten, 2018). We can model the influence of 
an environmental variable, x, on cost distance by calculating g as the 
exponentiation of the product of the environmental covariate's value 
for a particular edge and a coefficient �. We present a single covariate 
model here, but generalize this to multiple covariates later.

Conductance values, g, range from 0 (infinite cost) to infinity (no cost) 
and represent the degree to which the landscape facilitates movement 
between a focal pixel and its neighbouring pixel. If a variable has no 
effect, its coefficient is 0, conductance is 1 and resulting cost distances 
are equivalent to geographical distances. If an environmental variable 
facilitates movement, its coefficient is positive. If a variable impedes 
movement, its coefficient is negative.

We calculated the environmental covariate value of the edge, x, 
using either the mean of the focal and neighbour cell values (an iso-
tropic calculation) or the difference of those values (an anisotropic 
calculation). Using a difference calculation measures the effect of 
stepwise (focal- to- neighbour) changes in a variable, such as elevation 
or temperature, on movement (van Etten, 2018). We denote stepwise 
difference covariates with the subscript diff in the results section.

2.4  |  The deviation kernel

The probability of an animal moving through location i with a given 
additional cost distance d while moving between the endpoints of 
track t can be characterized by an exponential ‘deviation kernel’, 
�e−�dti, analogous to the dispersal kernel used to model the probabil-
ity of an organism dispersing a given distance from its natal location 
(Graves et al., 2014). Because the additional distance travelled must 
be ≥ 0, we used the exponential distribution for our deviation kernel, 
but a half- normal or other distribution could also be used. The expo-
nential distribution has the useful property that the inverse of the 
rate parameter � is the mean of the distribution, so the fitted value 
of 1∕� is the mean additional distance, allowing us to directly assess 

(1)d = AC + BC − AB.

(2)cost distance =
geographical distance

g
.

(3)1

cost
= g = e�x.

(4)xedge,mean =
xfocal + xneighbor

2
,

(5)xedge,difference = ∣ xneighbor − xfocal ∣ .
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F I G U R E  1  Illustration of likelihood calculations in the statistical corridor modelling framework. In practice, it is critical that the state 
space S be sufficiently large that L values at the edge of the landscape equal or approach zero.
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how far on average an animal deviates from the modelled least cost 
path in cost- distance units.

2.5  |  Estimation by maximum likelihood

Adapting the approach of Graves et al. (2014), we use a multinomial 
probability mass function to model the event of an animal moving 
through a location with a specific additional cost distance d, in dis-
crete space. Specifically, we calculated the likelihood of observing a 
point i  in track t as the multinomial probability of observing dti rela-
tive to the sum of all the values of Dt.

The denominator 
∑

S�e
−�Dt represents the sum of the pixel- level prob-

abilities of the entire raster on which the corridor is mapped, which is 
the state space S, and represents all possible paths between the move-
ment track endpoints. To capture all the possible paths, the state space 
S (the raster surface) must be sufficiently large so that the pixel- level 
probabilities at the edge of the raster approach zero.

Calculating the likelihood of a track requires combining the 
likelihoods of all points within the track. This can be done in one 
of several ways depending on how the geometry of the dti calcula-
tion is undertaken. These approaches differ in their computational 
requirements, assumptions regarding the animal's movements and 
whether they account for the serial nature of movement tracks, and 
are outlined in detail in Figure S1. To minimize computing time, we 
used the deviation- from- global- optimum approach, which does not 
account for serial autocorrelation among points, but instead treats 
them as independent observations. Readers may be interested in 
using one of the alternate geometries outlined in Figure S1 if serial 
autocorrelation is a concern.

If we assume that the dti values are mutually independent, the 
likelihood of observing the set of points within track t, lt, is the prod-
uct of all of the point- level likelihoods, except for the track endpoints.

We also calculated a spatial likelihood surface. Lt represents the pre-
dicted corridor in likelihood units. The values of Lt sum to 1, and each 
pixel represents the likelihood a pixel will be used, conditional on the 
cost- distance model, movement track endpoints and state space S.

2.6  |  Sampling and autocorrelation

We need a spatially representative sample of the true movement 
route to fully capture the effects of environmental covariates 

between the track endpoints. Complicating this, GPS collars typi-
cally record locations at fixed intervals in time rather than space 
so that fixes are generally not regularly spaced. During stopover or 
foraging periods, the animal will remain in the same section of the 
route, resulting in many closely spaced GPS fixes, whereas rapid, 
directed movements along the route will be poorly represented by 
fixes. The spatially irregular sampling of a raw GPS track would give 
stopover locations higher weight in the likelihood calculations, bias-
ing the fitted route towards stopovers. To address this, in our case 
study, we thinned GPS tracks so that points were not closer than 
2 km. This threshold allowed us to remove duplicate stopover loca-
tions, but was still smaller than the resolution of the environmen-
tal covariates, so stopover locations were still represented, and the 
overall architecture of the route (at the resolution of the raster) was 
not affected.

A closely related concern is whether serial correlation (tempo-
ral or spatial) of points in a GPS track results in autocorrelation of 
the dti values used in the likelihood calculation, which would violate 
the assumption that they are mutually independent. Although au-
tocorrelation may not affect coefficient estimates or the predictive 
accuracy of fitted models, by deflating error estimates it increases 
the risk of type I errors in inferential applications (Boyce, 2006). For 
inferential applications, thinning data spatially and diagnostic plot-
ting of dti values (described below) provide a way of reducing and 
assessing the degree of autocorrelation, as would use of one of the 
alternate geometries for calculating dti outlined in Figure S1.

2.7  |  Optimization and software implementation

We used the likelihood equation (Equation 8) as the objective 
function in a Nelder– Mead optimization routine to identify the 
most likely values of � (the coefficients) and � (the shape parame-
ter). We implemented all calculations in version 4.0.0 of R (R Core 
Team, 2020). In particular, we used the following packages: raster 
for raster data manipulation, gdistance for cost- distance calculations, 
stats for the optim function used for optimization and parallel to par-
allelize the track- level optimizations (Hijmans & van Etten, 2012; R 
Core Team, 2020; van Etten, 2018).

2.8  |  Herd- level inference

Herd- level estimates of � coefficients require extending the likeli-
hood calculation to the entire migratory herd, h, which included a set 
of migration tracks t = 1 … ntracks. We used a two- stage approach for 
estimating effects at the population level (Fieberg et al., 2010). We 
fit estimates of �̂t and �̂t for each track separately, then averaged the 
track �̂t values to calculate the herd- level �̂h and �̂h, and calculated 
the standard error for use in calculating confidence intervals:

(6)lti =
�e−�dti

∑

S�e
−�Dt

.

(7)lt =

npoints−1
�

i=2

�e−�dti
∑

S�e
−�Dt

.

(8)Lt =
�e−�Dt

∑

S�e
−�Dt

.

(9)�̂h = mean
(

�̂t=1,…,ntracks

)

,
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Following Fieberg et al. (2010), we calculated the herd- level likelihood 
as the product of the track- level likelihoods with the assumption that 
they are independent of each other:

The herd- level likelihood surface is the mean of the individual track 
probability surfaces:

We explored using a random effects model instead of the two- stage 
approach, which would require calculating the joint probability of 
the track- level random effect and the point- level effects from the 
deviation kernel. This joint probability cannot be calculated an-
alytically, because the probabilities depend on the cost- distance 
calculations that generate the residual cost surfaces from which 
the likelihoods are derived. The large number of cost- distance 
calculations required to numerically approximate the integral for 
the convolution of the two random variables makes this approach 
computationally impractical at present. Relative to a mixed effects 
model, variance estimators will be biased high in the two- stage ap-
proach which we took, making our approach comparatively conser-
vative (Fieberg et al., 2010).

2.9  |  Model selection

We used Akaike's information criterion (AIC) to identify the most 
informative model from a set of cost- distance models using differ-
ent combinations of covariates. We specified that k, the number of 
estimated parameters, was 1 (for �̂) plus the number of estimated �̂ 
coefficients.

2.10  |  Model assumptions

Our framework relies on the following assumptions about the data 
and animal behaviour: (1) the beginning and ending locations of a mi-
gration must be known, (2) movement locations occurring between 
the beginning and ending locations are all part of the migratory 
route (i.e. they do not contain back- and- forth, nomadic or explora-
tory movements), (3) that animals minimize costs and optimize the 
entire migration route rather than making movement decisions in-
crementally, and (4) that serial correlation (temporal or spatial) in the 
dti values are negligible.

2.11  |  Simulation

We simulated movement tracks using different values of � and �, and 
assessed the ability of the optimization routine to recover the � and � 
values used in the simulation. We used an elevation raster and a human 
footprint raster as variables in univariate cost- distance models of the 
form conductance = e�∗Elevation and conductance = e�∗Human Footprint 
(Table 1). These rasters had extents of 4 × 4 degrees and a grain of 
75 arc- seconds (~2.3 km). We randomly distributed the start and end-
points (20 each) for the tracks in the southern and northern 10% of a 
2 × 2 degree box centred in the rasters. We used all combinations of 
� and log(�) values (all integers from −4 to 4 for � values, and from −9 
to −1 for log(�) values). For each set of � and � values, scaled covariate 
surface and set of track start and endpoints, we generated a Lt sur-
face, and then randomly sampled 20 points in proportion to Lt. We 
used the model fitting procedure described above to estimate �̂ and �̂ 
values from the resulting point samples.

2.12  |  Mule deer migration case studies

We fit cost- distance models to movement tracks from three migra-
tory herds of mule deer (Figure 2). Data from the Tex Creek herd in 
eastern Idaho were collected between 2007 and 2018. Animals in the 
Antelope Creek herd, in central Idaho, were collared between 2011 
and 2018. The Red Desert to Hoback herd, a portion of the Sublette 
herd, migrates through western Wyoming, and those data were 
collected between 2011 and 2018 (Sawyer et al., 2016). Idaho and 
Wyoming mule deer capture and handling protocols were approved 
by the Institutional Animal Care and Use Committees of the Idaho 
Department of Fish and Game Wildlife Health Laboratory and the 
University of Wyoming (including protocols 20131111KM00040, 
20151204KM00135 and 20170215KM00260) and Wyoming Game 
and Fish Department (Chapters 33– 937), respectively.

We only used spring migrations. The beginning and end of each 
migration were identified from changes in the net squared displace-
ment of a track over time (Merkle et al., 2019). For each track, we 
thinned points so that consecutive points in the series were at least 
2 km apart, ensuring that areas with clusters of GPS points were 
not overrepresented, and retained only thinned tracks which had at 
least 10 remaining points. For each herd, we divided the thinned mi-
gration tracks into two equal groups of up to 30 tracks, and used one 
for fitting the maximum likelihood models and the other for model 
evaluation. This resulted in 30 training and 30 evaluation tracks for 
the Red Desert to Hoback migration, 21 training and 21 evaluation 
tracks for the Tex Creek migration, and 14 training and 14 evaluation 
tracks for the Antelope Creek migration.

2.13  |  Environmental covariates

We used Julian date of peak instantaneous rate of green- up (IRG), el-
evation from a digital elevation model (DEM), slope, aspect, percent 

(10)SE�̂h
=

sd
�

�̂t=1,…,ntracks

�

√

ntracks
,

(11)CI�̂h ,95%
= �̂h ± 1.96 ⋅ SE�̂h

.

(12)lh =

ntracks
�

i=1

npoints−1
�

i=2

�e−�dti
∑

S�e
−�Dt

.

(13)Lh =

(

ntracks
∑

i=1

Lt

)

∕ntracks.
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shrub cover, snow- off date and human footprint as covariates 
(Table 1). Each of these covariates influence mule deer movements 
or habitat selection (Merkle et al., 2019; Sawyer et al., 2017; Wyckoff 
et al., 2018). All rasters of covariates were resampled using bilinear 
interpolation to a 15 arc- second (~0.5 km) unprojected grid in the 
WGS 84 coordinate reference system (Hijmans & van Etten, 2012). 
We used a correction for calculating cost distances on unprojected 
grids in the gdistance package. Each herd had its own analysis area 
with an extent 30% larger than the combined extent of the tracks; 
this is the state space S for the herd, described above.

We standardized environmental variables to aid convergence in 
model fitting. We did this by scaling them by dividing by the root 

mean square of the variable in each herd's study area. We did not 
centre the variables so that coefficients could be interpreted relative 
to the variable's actual zero value. We did not standardize variables 
used in stepwise difference cost calculations, including elevation, 
date of peak IRG or snow- off date, as doing so resulted in very small 
stepwise changes between pixels, large (>103) fitted coefficients and 
convergence issues. We found that scaling stepwise difference vari-
ables by factors of 10 such that the estimated coefficients ranged 
between 0.1 and 10, facilitated convergence and interpretability. We 
scaled date of peak IRG and snow- off date by 100, and elevation 
by 10. IRG, elevation and snow- off date were strongly correlated 
(Pearson's p values >0.7) with each other.

2.14  |  Model fitting

We fit the models at a 120 arc- second (~3.7 km) pixel size using (1) 
a predictive candidate model set and (2) an explanatory candidate 
model set (Tredennick et al., 2021). For predictive modelling, we 
included all covariates, including highly correlated ones, in the full 
model SLOPE + SOUTH + SHRUB + HF + IRG + DEM + SNOW. We 
then used AIC to identify the best model from a candidate set of the 
full model and all nested models. For explanatory modelling with the 
goal of ecological interpretation, we excluded any pairs of variables 
with Pearson's r values >0.7. Using AIC, we selected the best model 
from a candidate model set consisting of (1) the three full models, 
each of which included all four non- correlated covariates (SLOPE, 

TA B L E  1  Environmental covariates used in simulation and model fitting

Acronym Description Hypothesized effect Details and data citation

DEMdiff Elevation Stepwise change in elevation along a route may 
increase energetic cost and cost distance

Elevation in the Western United States from 
the National Elevation Dataset, originally at 
a 90 m resolution (Leu et al., 2008)

SLOPE SOUTH Elevation derivatives Steeper slopes and south- facing aspects, which 
are associated with shrub habitats, complex 
topography and less snow depth, respectively, 
hinder and facilitate movement

Elevation derivatives calculated from the 
DEM layer are slope (SLOPE) and aspect, 
which is measured in degrees from due 
north (SOUTH). Elevation derivatives were 
calculated using the terrain() function in 
the raster package in R (Hijmans & van 
Etten, 2012; Leu et al., 2008)

IRGdiff Date of peak IRG Stepwise change in IRG will increase cost 
distances, if mule deer surf a resource wave 
of greening vegetation

Date of peak IRG values were averaged from 
2001 to 2014, using spatial data prepared 
according to Merkle et al. (2016)

HF Human footprint Anthropogenic influence impedes movement The human footprint index is derived by 
weighted scoring of human habitation, 
energy, irrigation, and transportation 
infrastructure, and agricultural use (Leu 
et al., 2008)

SHRUB Percent shrub Shrub vegetation is a primary source of forage for 
mule deer, and facilitates movement

All shrub species are included. Data are from 
USGS shrubland map data products, 
originally at a 30 m resolution (Young, 2017)

SNOWdiff Snow- off date Stepwise change in snow- off date, which results 
in increased movement through snow, will 
increase cost distance

The average date at which snow was no longer 
on the ground from 2001 to 2015, derived 
from MODIS (O'Leary III et al., 2017)

Abbreviation: IRG, instantaneous rate of green- up.

F I G U R E  2  Study region and migration tracks used in case study, 
from Tex Creek (Idaho), Antelope Creek (Idaho) and Red Desert to 
Hoback (Wyoming) mule deer migrations.

0 50 100km

Antelope Creek,
Idaho

Tex Creek, Idaho

Red Desert
to Hoback,
Wyoming
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SOUTH, SHRUB and HF) and only one of the correlated stepwise 
difference covariates (IRG, DEM and SNOW), and (2) all models 
nested within each of the three full models.

2.15  |  Model evaluation and cross- validation

We evaluated the predictive ability of the best- performing predic-
tive model for each herd against the evaluation tracks of the same 
herd, and against all tracks of the other two herds. We also com-
pared these predictions against a null model prediction consisting 
of a straight- line path (with log(�) = − 5). To do so, we began using 
either the null model or the top- performing predictive cost- distance 
model fitted to the training tracks of one herd (see Table S1) to pro-
ject likelihood corridors, Lh, for all three herds. We did this using the 
estimated ̂�h and ̂�h values to predict likelihood corridors, Lt, between 
the endpoints of each track. We took the mean of the Lt surfaces to 
generate Lh. To determine the endpoints for the corridor projections, 
we used the endpoints of all tracks (training and evaluation tracks 
combined) of the other two herds as well as just the evaluation 
tracks of the training herd, ensuring that a model's training tracks 
were not used in its evaluation. For each model, we then quantified 
the proportion of the area of Lh needed to contain 95% of points in 
each track in the evaluation herd, providing a track- level assessment 
of the predictive ability of the models across herds (Figure S7). We 
then plotted the percentile of each predicted Lh against the propor-
tion of validation track GPS points contained in each Lh percentile 
(Figure 4). This measures the ability of a fitted model to predict 
movement track locations, and allows comparison of the predictive 
ability of different models. We plotted the predicted Lh surfaces and 
the evaluation tracks to visualize their spatial differences (Figure 5). 
We also mapped the predicted Lh surfaces for the training tracks to 
visually assess the spatial fit of the training data to the fitted model 
(Figures S8– S10).

We assessed the sensitivity of our coefficient estimates to the 
2 km threshold used to rarefy the movement tracks by fitting the 
top- performing explanatory model to the Antelope Creek herd 
tracks, rarefied at 100, 300, 500, 1,000, 1,500, 2,000 and 3,000 m 
thresholds (Figure S14). To visually check for autocorrelation, we 
used plots of dti values (which can be thought of as residuals) against 
observation order, as well as full and partial autocorrelation function 
plots (Figure S15). We tested for autocorrelation using Spearman's 
rank correlation coefficient at a lag of one GPS point, for the top- 
performing explanatory model for each herd.

3  |  RESULTS

3.1  |  Recovery of simulated parameters

Our model fitting approach successfully estimated the original pa-
rameter values (� and �) from simulated movement track data, with 
two important exceptions resulting from parameter values that 

were inappropriate for the spatial extent and grain of our simula-
tion (Figures S3– S6). First, the combination of very small log(�) val-
ues (large mean residual distances) and large � values (which act to 
‘shrink’ Euclidean distance) resulted in very dispersed point distribu-
tions and likelihood surfaces relative to the scale of the simulation 
area, causing fitted coefficients to be underestimated (Figure S2). 
For example, for an area where the environmental covariate has a 
value of 1, a log(�) value of −9 and a � coefficient of 4 would re-
sult in a mean residual distance in Euclidean terms of ~442 km, ap-
proximately the size of our simulation area. Second, the combination 
of large log(�) values and small � values caused the mean residual 
distance of the simulated points to fall far below the spatial reso-
lution of the simulation and inflated fitted estimates of log(�) (al-
though � estimates remained accurate). For example, if log(�) = − 4, 
mean residual distances will be ~54 m, whereas the resolution of our 
simulation was ~2.3 km. The deviation- from- global- optimum geom-
etry we used, which lacks serial autocorrelation and treats points 
independently, caused the simulated points to be scattered across 
the likelihood surface (Figure S2); alternate geometries that incor-
porate autocorrelation would allow more realistic movement track 
prediction.

3.2  |  Ranking of fitted explanatory models by 
delta AIC

The best- fitting explanatory models all included human footprint, 
slope, percent shrub and south- facing aspects, and each included 
a different one of the three correlated, stepwise difference vari-
ables (snow- off date, IRG and elevation; Table 2). The best- fitting 
predictive models included all variables except human footprint for 
Antelope Creek and Red Desert to Hoback, and all variables except 
slope for Tex Creek.

3.3  |  Coefficients of best- fitting 
explanatory models

The direction and significance of the effects of environmental vari-
ables on movement costs varied by herd. Only south- facing aspects 
were significant for all three herds, but they facilitated movements 
for the Antelope Creek and Tex Creek herds, and impeded move-
ment for the Red Desert to Hoback herd (Figure 3, Table 3). All five 
variables were significant at the herd level for the Red Desert to 
Hoback herd, three (SHRUB, SOUTH and SNOW) were significant 
for the Antelope Creek herd, and only one (SOUTH) was significant 
for Tex Creek.

Human footprint impeded movements for all herds, although 
it was significant only for the Red Desert to Hoback herd. Steeper 
slopes facilitated movements for the Tex Creek and Red Desert to 
Hoback herds, although were only significant for the Red Desert 
to Hoback herd. Percent shrub significantly facilitated movements 
for the Antelope Creek and Red Desert to Hoback herds. Stepwise 
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changes in snow- off date impeded movement for the Antelope 
Creek herd, and date of peak IRG impeded movement for the Red 
Desert to Hoback herd.

3.4  |  Predicted corridor surface model 
evaluation and cross- prediction

Based on the proportion of the study area needed to capture each 
percentile of the evaluation tracks, we found that for all herds the 
fitted predictive models predicted the locations of same- herd evalu-
ation tracks better than a null model based on a straight line be-
tween track endpoints (Figure 4; Figures S7 and S11– S13). Fitted 

models had mixed ability to predict the tracks of other herds. The 
Red Desert to Hoback model performed well in predicting the 
Antelope Creek herd, and vice versa. Conversely, the Red Desert 
to Hoback and Antelope Creek herds performed equivalent to or 
worse than the null model at predicting the Tex Creek tracks, and the 
Tex Creek model was the least predictive of the other herds' tracks. 
These general patterns were visually apparent in the spatial patterns 
of the cross- herd predictions with the evaluation tracks (Figure 5). 
Coefficient estimates were insensitive to changes in the spatial 
threshold used to rarefy tracks (Figure S14). At a one- point lag, 2 out 
of 14 of the Antelope Creek, 4 out of 21 of the Tex Creek and 18 of 
30 of the Red Desert to Hoback tracks' dti values were significantly 
correlated (Spearman's rank correlation p- values <0.05).

4  |  DISCUSSION

4.1  |  General significance

Our statistical corridor modelling approach enables hypothesis 
testing, model selection, corridor prediction and quantifies the 
influence of environmental factors on migratory or other cost- 
minimizing movements. Furthermore, ecologists can use it to 
quantify uncertainty in the spatial location of corridor predictions 
and in the model coefficients, to incorporate multiple environ-
mental factors that can either increase or decrease movement 
costs and to measure individual variability in movement behaviour 
and corridor selection.

Recent corridor modelling studies have focused on post- hoc 
testing of corridor predictions against movement tracks (Bond 
et al., 2017; Keeley et al., 2017; McClure et al., 2016; Zeller 
et al., 2018). These studies have established that corridor predic-
tions are sensitive to the transformation of habitat suitability or 
selection scores to a cost surface, thereby affecting the degree to 

Herd Model dAIC

Antelope Creek HF + SLOPE + SHRUB + SOUTH + SNOWdiff 0

SLOPE + SHRUB + SOUTH + SNOWdiff 17.1

HF + SHRUB + SOUTH + SNOWdiff 20

HF + SLOPE + SHRUB + SOUTH + IRGdiff 23.9

HF + SLOPE + SHRUB + SOUTH + DEMdiff 41.1

Red Desert to Hoback HF + SLOPE + SHRUB + SOUTH + IRGdiff 0

HF + SLOPE + SHRUB + IRGdiff 18.9

SLOPE + SHRUB+SOUTH + IRGdiff 30.1

HF + SLOPE + SHRUB + DEMdiff 90.7

HF + SLOPE + SHRUB + SOUTH + DEMdiff 99.3

Tex Creek HF + SLOPE + SHRUB + SOUTH + DEMdiff 0

HF + SLOPE + SHRUB + SOUTH 10.6

HF + SLOPE + SOUTH + SNOWdiff 20.6

HF + SHRUB+SOUTH + DEMdiff 31.3

HF + SHRUB + SOUTH + SNOWdiff 43.4

TA B L E  2  Explanatory model rankings 
based on delta AIC. Explanatory models 
do not include correlated variables 
DEMdiff, IRGdiff and SNOWdiff within the 
same model

F I G U R E  3  Cost- distance coefficient estimates for the top- 
performing explanatory model for each herd. DEM, IRG and 
SNOW were correlated, so they were not included together in 
the same explanatory models. Coefficients above 0 indicate the 
variable decreases costs, and below 0 indicate increased costs to 
movement.
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which corridor predictions match movement tracks. Our approach 
directly fits cost coefficients to the movement data, ensuring that 
the relationship between geographical distance and environmen-
tally weighted cost distance reflects the animals' actual movements. 
Cost- distance corridor boundaries are commonly delineated by 
specifying an arbitrary cost- distance threshold relative to the least 
cost path. In contrast, our approach allows for the use of probability- 
based corridor boundary thresholds, because we represent pre-
dicted corridors as likelihood surfaces, and these probability- based 
thresholds derive directly from how points are distributed around 
the least cost path.

4.2  |  Interpretation of simulation results

Our simulations showed that the maximum likelihood optimization 
routine can recover reasonable simulated coefficients and log(�) val-
ues from the simulated tracks, as long as those values are appropri-
ate for the extent and grain of the study. We can be confident in the 

coefficients fitted to real movement tracks in the case studies, as 
the fitted empirical coefficients were largely between −4 and 4, and 
log(�) values remained above −7.

4.3  |  Interpretation of case study results

The coefficients fitted to the mule deer migration tracks in the ex-
planatory models were consistent with previous mule deer habi-
tat selection studies. Previous studies have found that shrubs and 
south- facing slopes are important to mule deer habitat (Bishop 
et al., 2005; Merkle et al., 2019). Conversely, our results indicate 
that human footprint hinders movements, consistent with existing 
research on the effect of anthropogenic disturbance on mule deer 
migrations (Wyckoff et al., 2018). Elevation, snow- off date and date 
of peak IRG had Pearson's correlation coefficients greater than 0.7, 
making inference about their independent effects on migration cor-
ridors difficult. Deer selected routes that avoided stepwise change 
in snow- off date and date of peak IRG when these were included 

TA B L E  3  Fitted coefficients and 95% confidence intervals for each herd's top- performing explanatory model. Significant coefficients 
(confidence intervals not overlapping 0) are bold

Herd Model log(�) HF SLOPE SHRUB SOUTH DEM SNOW IRG Metric

Antelope Creek HF+
SLOPE+
SHRUB+
SOUTH+
SNOWdiff

−4.49 0.12 0.18 0.73 0.69 NA −0.98 NA Upper 95% C.I.

−5.29 −0.30 −0.09 0.56 0.48 NA −1.37 NA �̂h

−6.08 −0.71 −0.37 0.40 0.27 NA −1.76 NA Lower 95% C.I.

Red Desert to Hoback HF+
SLOPE+
SHRUB+
SOUTH+
IRGdiff

−6.19 −0.09 0.28 0.65 −0.25 NA NA −0.38 Upper 95% C.I.

−6.47 −0.34 0.17 0.51 −0.38 NA NA −0.70 �̂h

−6.75 −0.59 0.06 0.36 −0.51 NA NA −1.03 Lower 95% C.I.

Tex Creek HF+
SLOPE+
SHRUB+
SOUTH+
DEMdiff

−5.29 0.03 0.12 0.03 0.39 0.04 NA NA Upper 95% C.I.

−5.62 −0.21 0.04 −0.10 0.21 0.00 NA NA �̂h

−5.96 −0.45 −0.04 −0.24 0.02 −0.03 NA NA Lower 95% C.I.

F I G U R E  4  Cross- herd predictive ability 
of the top- performing predictive models 
(Table S1), measured as the proportion of 
the predicted corridor likelihood surface 
needed to contain a given proportion of 
the evaluation herd's GPS points. The 
ability of a model to predict migration is 
better when a higher proportion of the 
evaluation herd's track points (x- axis) are 
retrieved within in a smaller proportion 
of the evaluation herd study area (y- axis). 
Within- herd predictions are shown in 
solid lines, while cross- herd evaluations 
are shown with dashed lines.
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0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.0

0.1

0.2

Proportion of Points

Pr
op

or
tio

n 
of

 S
tu

dy
 A

re
a

Training Herd Red Desert to Hoback Tex Creek Antelope Creek Null (Euclidean)

Evaluation Herd



    |  11Methods in Ecology and EvoluonNUÑEZ et al.

separately as stepwise difference variables, consistent with evidence 
that mule deer track green- up across landscapes (Aikens et al., 2017; 
Merkle et al., 2016). Paths with lower stepwise changes in the date 
of peak IRG or snow- off date along the corridor would make green- 
wave tracking, or tracking of receding snow, more profitable.

4.4  |  Model validation

All within- herd predictions performed better than the null Euclidean 
model, both at a track level (Figure S7) and at the herd level (Figure 4), 
illustrating the basic validity of the model. Cross- herd predictive 
ability was best between the Red Desert and Antelope Creek herds, 
and worst between those and the Tex Creek herd. This may be due 
to differences in the spatial configuration of covariates in the migra-
tory landscape or endpoint geometry (Short Bull et al., 2011). The 
Tex Creek migrations are relatively linear over a homogeneous land-
scape and thus may be less influenced by the environmental factors 
included in the models.

4.5  |  Modelling assumptions and statistical 
considerations

Cost- distance models are subject to two primary assumptions, in-
cluding (1) the animals are able to identify the optimal route between 
endpoints, for example, as the result of a population learning the op-
timal route through trial and error over many generations, and (2) the 
animals will prefer the least- cost, most direct route (in cost- distance 
terms) between two points in space (Beier et al., 2008). Mule deer 
typically migrate between distinct seasonal ranges and show strong 
spatial memory and fidelity to individual migration routes and 

seasonal ranges that match the framework used here, with start and 
endpoints (Merkle et al., 2019). Non- migratory directed movements, 
such as those between distinct habitat patches within a home range, 
also work well with these assumptions. Cost- distance methods 
are less appropriate for species, contexts or spatiotemporal scales 
where animals are not acting to reduce cost distance and moving to 
a specific destination. For example, it may be less appropriate to fit 
models to the tracks of nomadic movements, natal dispersal events 
where the destination is unspecified or area- restricted search forag-
ing movements.

The statistical framework of maximum likelihood also imparts 
its own assumptions and constraints. Although computationally 
expedient, the geometry which we used (deviation- from- global- 
optimum) does not account for the serial nature of movement tracks, 
potentially leading to autocorrelation in the dti values within a track. 
At a one- step lag, we saw a minor amount of autocorrelation for the 
Antelope Creek and Tex Creek tracks' dti values. However, there 
was a substantial amount of autocorrelation in the Red Desert to 
Hoback dti values, as these tracks tended to have more points than 
those of the other herds. Our two- stage approach (which averaged 
track- level coefficient estimates to arrive at herd- level coefficient 
estimates and confidence intervals) was robust to the potential 
for inflated track- level error estimates, but we also could have ad-
dressed this by further spatial thinning of the Red Desert to Hoback 
points, or using an alternate geometry for the dti calculations.

The herd- level likelihood equations assume that individual tracks 
are independent of each other. While the effects of within- herd 
track correlation merit further analysis, this is a reasonable assump-
tion for matriarchal groups within a migratory herd, as groups depart 
and arrive at distinct winter and summer home ranges at different 
times. We addressed multicollinearity by conducting model selec-
tion separately for the explanatory models (which excluded highly 

F I G U R E  5  Cross- herd cost- distance 
model predictions using the top- 
performing predictive models (Table S1). 
Models were fit using training herd tracks, 
and then used to create a herd- level 
likelihood corridor surface using the 
endpoints of the evaluation herd tracks. 
The evaluation herd tracks (black dashed 
lines) are shown over the predicted 
likelihood corridor surface. When training 
and evaluation herds are the same, the 
set of tracks we used for evaluation was 
different from that which we used for 
training.
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correlated variables) and predictive models (which did not). Further 
work is needed to understand the effect of multicollinearity on cost- 
distance models, and the best way to quantify correlations (Van 
Strien et al., 2012).

Generating cost- distance surfaces is computationally intensive, 
and computational constraints limit the spatial resolution and num-
ber of tracks that can be included in an analysis. Limiting the number 
of candidate models and coarsening the resolution greatly decreased 
the time needed for model fitting. At a 120 arc- second (~3.7 km) res-
olution, running the model selection for the three herds took ap-
proximately 5 days using 40 cores on a 2.4 GHz server. Scaling this 
approach beyond the scope presented here would benefit from the 
use of high- performance computing resources.

4.6  |  Application and extensions

This methodology enables the direct statistical characterization of 
how environmental factors impede or promote movement in cor-
ridors, and can be applied to fundamental research in movement, 
migration and corridor ecology. The ability to test hypotheses re-
garding environment– corridor relationships can be used to assess 
the consequences of land use or climatic changes occurring in a 
corridor. Future work could measure the link between modelled 
cost- distance metrics and the caloric costs of changing movement 
paths in response to environmental change. Researchers can read-
ily extend this approach to other migratory and non- migratory taxa 
where animals are acting to reduce movement costs during migra-
tion, within- home range or dispersal movements, as long as move-
ments are directional and link discrete start and end locations. For 
example, one could fit cost- distance models to directed movements 
within the home range of a non- migratory species, and then predict 
a corridor between two habitat areas on either side of a highway, or 
between discrete habitat patches within a home range or in a metap-
opulation. For predicting corridors for migrations with little or no ex-
isting GPS collar data, start and end locations can be generated from 
seasonal habitat selection models, or from data linking together 
specific seasonal ranges, such as mark– recapture data (e.g. from ear 
tags) coming from surveys of seasonal ranges. The approach's pre-
dictive ability enables corridor modelling for conservation planning 
in locations where insufficient data are available for animal- defined 
empirical corridors, can identify sites for the restoration of corridors 
that have been blocked, and can assess the effects of management 
actions or past and future vegetation, land use and climate change 
on corridors.
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