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Abstract

Habitat selection is strongly scale-dependent, and inferring the characteristic

scale at which an organism responds to environmental variation is necessary to

obtain reliable predictions. The occupancy framework is frequently used to

model species distribution with the advantage of accounting for imperfect

observation, but occupancy studies typically do not define the characteristic

scale of the modelled variables. We used camera trap data from winter wildlife

surveys in the Swiss part of the Jura Mountains to model occupancy of wild

boar (Sus scrofa) and roe deer (Capreolus capreolus). We used a three-step

approach: (1) first, we identified factors influencing detectability; (2) second,

we optimized the characteristic scale of each candidate explanatory variable;

and (3) third, we fit multivariable, multiscale occupancy models in relation to

land cover, human presence and topography. Wild boar occupancy was mainly

influenced by the interaction between elevation within 2500 m and the propor-

tion of forested areas within a 2500 m, with a nonsignificant additional effect

of the interaction between ruggedness within 1900 m and the proportion of

forested areas within 2500 m as well as the distance to urban areas. Roe deer

occupancy was mainly associated with the interaction between ruggedness

within 900 m and the proportion of open landscape within 900 m, with an

additional nonsignificant effect of the interaction between elevation within

1500 m and the proportion of open landscape within 900 m as well as the dis-

tance to urban areas. Incorporating scale optimization in occupancy modelling

of camera trap data can greatly improve the understanding of species-environ-

ment relationships by combining the possibility of occupancy models to correct

for detection bias and simultaneously allowing to infer the characteristic scale

at which certain factors influence the distribution of the organisms studied.

INTRODUCTION

Predicting species-environment relationships is at the heart

of ecological research. Species distribution is driven by a

complex interplay of abiotic and biotic environmental fac-

tors such as climate, topography and resource availability,

while being influenced by the presence of conspecifics,

competitors and predators (Morrison et al., 2006). Differ-

ent habitat components can drive habitat selection (i.e. the

process by which an animal chooses its habitat; Hall et al.,

1997) at different spatiotemporal scales (Mayor et al.,

2009). The process is often described using hierarchical

orders of selection (Johnson, 1980). Species distribution is

considered to be related to environmental conditions at

broad scales (first-order selection), while an individual’s

home range placement within this geographic extent (sec-

ond-order of selection) and habitat use within the home

range (third- and fourth-order of selection) are considered
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to be driven by conditions at medium to small scales.

Implicit to Johnson’s hierarchical framework, each ecologi-

cal process that drives habitat selection at one order can be

explicitly linked to a specific ecological neighbourhood at

which an organism responds to environmental variation

(‘characteristic scale’; McGarigal et al., 2016). Habitat selec-

tion and habitat use are thus inherently scale-dependent,

and inferring the characteristic scale for each environmen-

tal variable is crucial to make robust inferences about the

relationship between a species and its environment (Mayor

et al., 2009; McGarigal et al., 2016).

Camera traps have become a well-established tool to

gather occurrence data from many animal taxa and to

model their distribution and habitat use (Burton et al.,

2015; Caravaggi et al., 2020; O’Connell et al., 2010;

Rovero & Zimmermann, 2016). While most camera trap

surveys target a focal species, camera traps inherently

detect multiple species, and observations of nontarget

species provide valuable data for multispecies analyses

(Edwards et al., 2018; Mazzamuto et al., 2019).

Detectability (i.e. the probability an animal triggers the

camera trap and is recorded if it is present) of different

species is influenced by specific animal characteristics

(e.g. body mass and group size), environmental variables,

camera trap model and camera trap setup (Hofmeester

et al., 2019). Depending on the research question, varia-

tion in detectability resulting from environmental varia-

tion or differences in species traits needs to be considered

when modelling in order to ensure reliable inferences

from camera trap data (Edwards et al., 2018; Hofmeester

et al., 2019; Mazzamuto et al., 2019).

Here, we seek to determine the size of the ecological

neighbourhood in which environmental variation influ-

ences habitat use sensu McGarigal et al. (2016) using

occupancy models on camera trap data. Occupancy mod-

els are particularly suited to model species distribution

and habitat use from camera trap observations (e.g. Nied-

balla et al., 2015; Oberosler et al., 2017; Rovero et al.,

2013; Wevers et al., 2020) as the occupancy modelling

framework advantageously uses repeated sampling of

detection/nondetection data typical of camera trap sur-

veys to account for imperfect detection (MacKenzie et al.,

2017). While resource selection function models (RSFs)

applied to presence-only data in a use-available design

often explicitly determine the characteristic scale at which

an organism responds to each environmental variable

(Fattebert et al., 2018; Laforge et al., 2016; McGarigal

et al., 2016; Zeller et al., 2017), this is less common in

occupancy modelling. Historically, some occupancy stud-

ies have incorporated Johnson’s hierarchical selection

framework into a multiscale approach by contrasting

fine- and coarse-scale occupancy models, thereby com-

paring different orders of selection (e.g. Biggs & Olden,

2011; Hagen et al., 2016; Long et al., 2011; Mordecai

et al., 2011; Sunarto et al., 2012). Methods for integrating

the characteristic scale explicitly into occupancy mod-

elling (scale-selecting multispecies occupancy models;

Frishkoff et al., 2019; Stuber & Gruber, 2020) have

recently been developed, but case studies in occupancy

modelling that include the characteristic scale are limited

(but see, e.g., Frank et al., 2017; Niedballa et al., 2015;

Stevens & Conway, 2019). Determining the characteristic

scale could be especially important when modelling habi-

tat use of nontarget species for which the survey design

was not optimized. As camera trap spacing does not

always match a species’ characteristic scale, modelling

habitat use at a predefined scale can lead to inaccurate

conclusions on which environmental variables are most

influential in determining a species’ distribution (Mayor

et al., 2009).

To address this research gap, we used by-catch data

from a camera trap survey designed to monitor Eurasian

lynx (Lynx lynx) in the Swiss Jura Mountains (Foresti

et al., 2014; Kunz et al., 2016; Zimmermann et al., 2015)

to model wild boar (Sus scrofa) and roe deer (Capreolus

capreolus) winter habitat use. In the original study setup,

camera trap placement was optimized to enhance lynx

detectability for photographic capture–recapture by plac-

ing two camera traps opposite each other on forest roads

and trails frequently used by lynx. While lynx, like many

carnivores, actively use roads and trails, ungulates mostly

avoid roads as part of their antipredator response

(D’Amico et al., 2016; Harmsen et al., 2010). Hence, we

predict that the placement of camera traps on trails or

roads to enhance lynx detection negatively affects

detectability of both nontarget species (Prediction 1).

Wild boar and roe deer are considered woodland spe-

cies (Barrios-Garcia & Ballari, 2012; Morellet et al., 2011;

Rutten et al., 2019) that have colonized agricultural land-

scapes (Martin et al., 2018; Morelle et al., 2016; Morellet

et al., 2011; Rutten et al., 2019). While both forests and

crops provide food resources for wild boar and roe deer,

there is a contrast in safety, as the species are exposed in

the open landscape but, especially for roe deer, susceptible

to lynx predation in the forest. Both wild boar and roe

deer are known to adapt their habitat use depending on

human disturbance (Bonnot et al., 2013; Fattebert et al.,

2017; Fischer et al., 2016; Martin et al., 2018; Morelle &

Lejeune, 2015). Roe deer are found to shift between sites

with high and low elevation (Coulon et al., 2008; Mys-

terud, 1999) but tend to avoid rugged terrain (Lone et al.,

2014). Global wild boar distribution is limited predomi-

nantly by temperature, both high and low (Cordeiro

et al., 2018; Markov et al., 2019). In the Jura Mountains,

we expect that wild boar occupancy is positively affected

by forest availability but negatively affected by elevation
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and human presence, while roe deer occupancy is posi-

tively affected by forest availability but negatively affected

by elevation, ruggedness and human presence (Prediction

2).

Instead of relying on the scale determined for the lynx

study, we pseudo-optimized the characteristic scale of

each variable (McGarigal et al., 2016). Large land cover

features influence occupancy on a coarser grain than local

features with a less defined edge (Niedballa et al., 2015).

In the Jura Mountains, we expected elevation, slope and

ruggedness to be influential topographic features and for-

est, open landscape and urban areas to be influential

habitat features driving occupancy of both species. Hence,

with regard to scale, we predict that these features drive

occupancy on a coarse grain, with the characteristic scale

being similar for all features (Prediction 3).

MATERIALS AND METHODS

Study site

The Jura is a subalpine mountainous region that stretches

along the border of Switzerland and France. Most of the

Jura is covered by forest, both deciduous and coniferous,

interspersed with pastures and alpine meadows. Elevation

ranges between 484 and 1718 m, with the highest peaks

in the south and elevation decreasing towards the north.

Annual precipitation ranges between 1300 and 2000 mm

(Blant, 2001) and is more pronounced in the West. With

increasing altitude, climate becomes harsher, and in win-

ter snow is often found at higher elevation.

Camera trap survey

Xenon white flash camera traps (Cuddeback Ambush,

Cuddeback Capture or Cuddeback C1) were deployed in

a lynx monitoring programme. At each site, two camera

traps were mounted opposite each other at a height of

70 cm for at least 60 days (see Zimmermann & Foresti,

2016, for details). A total of 200 sites were sampled in the

period February–April over three consecutive years. In the

central Jura region, 53 sites were sampled in 2014, 51 sites

in the southern region in 2015 and 96 sites in the north-

ern region in 2016. Camera trap sites were selected using

systematic nonrandom sampling: a grid of 2.5 9 2.5 km

was superimposed on the area, after which deployment

sites were chosen in every second grid cell by identifying

forest roads and trails frequently used by lynx to maxi-

mize the probability of lynx detections for modelling their

abundance and density using photographic capture-recap-

ture (Foresti et al., 2014; Kunz et al., 2016; Zimmermann

et al., 2015).

Scale-optimized occupancy modelling

Occupancy models use a detection matrix in which detec-

tion and nondetection are recorded for a number of con-

secutive occasions (i.e. surveys). We pooled detection

data from the two camera traps at a site, which was

shown to increase detection probability and improve pre-

cision of occupancy and detection estimates (Evans et al.,

2019; Wong et al., 2019). To reduce nondetections and

facilitate modelling, we pooled the detection/nondetection

data of three consecutive 24-h periods to define one

detection occasion (Shannon et al., 2014). We constructed

species-specific detection matrices for wild boar and for

roe deer using the CamtrapR package (version 1.2.3,

Niedballa et al., 2016). We modelled occupancy using the

Unmarked package (version 0.13-2, Fiske & Chandler,

2017) after standardizing explanatory variables to a mean

of zero and standard deviation of one using the decostand

function in the Vegan (version 2.5-6) package in the R

environment (version 3.6.3, R Core Team, 2019).

We followed a three-step approach, in which we com-

bined the two-step process of identification of detection

and occupancy variables (Ciarniello et al., 2007; MacKen-

zie et al., 2017); Niedballa et al., 2015) with a scale-opti-

mization approach borrowed from recent multi-scale RSF

modelling (Fattebert et al., 2018; Laforge et al;, 2016;

McGarigal et al., 2016; Zeller et al., 2017): (i) we first

identified variables influencing detectability; (ii) we then

optimized the size of the ecological neighbourhood, or

characteristic scale, at which organisms respond to each

environmental variable in the occupancy component of

univariate occupancy models; and finally, (iii) we built

multivariable occupancy models using the identified

detection variables(s) and the scale-optimized occupancy

variables.

i Detectability modelling: site-specific and observation-

specific covariates

Imperfect detection—that is, when a species present is

not observed—is known to introduce bias in species dis-

tribution models (Denes et al., 2015; Gu & Swihart,

2004). Through repeated sampling, occupancy models

allow incorporating the underlying detection process at a

specific site and relating the detection probability to site-

specific or observation-specific parameters (MacKenzie

et al., 2017). We included camera trap effort as a possible

observational covariate on the detection probability. We

defined camera trap effort as the sum of the number of

days camera traps were active during a 3-day occasion,

with a minimum of 1 day when only one of the camera

traps was functioning on one of the 3 days and a maxi-

mum of 6 days when both camera traps were functioning

for 3 days. We coded camera trap failures (i.e. when the
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camera trap was not active due to technical problems) as

NA in both the effort and detection matrix. We included

the year of deployment as a site covariate potentially

influencing detectability. However, the three regions in

our study site were sampled in three consecutive years;

therefore, year of deployment is confounded with survey

region, and an effect of year of deployment could indicate

either an effect of sampling year or an effect of region. As

camera traps were deployed on game trails, hiking trails

or forest roads for optimal lynx detection, we added trail

type as a site-specific covariate in our detection models.

We corrected for possible differences in detection proba-

bility due to the varying sensor sensitivity between the

three camera trap models used by adding the combina-

tion of camera trap models that were deployed at each

site as a site covariate. We fitted single season occupancy

models with a fixed null model for occupancy (Ѱ) and

different possible combinations of the detection (p)

covariates. We used model selection to determine the

most influential covariates through comparison of AIC

values. Even when several models were within ΔAIC <2,
we chose to continue with the detection variable with the

lowest AIC value.

ii Scale optimization: site-specific covariates

We deemed mean elevation, mean slope and mean

ruggedness to be influential topographic parameters limit-

ing distribution and extracted them from a digital eleva-

tion model (EU-DEM). We used CORINE satellite

imagery (Copernicus Land Monitoring Service, 2018) to

reclassify the available land cover types into urbanized

area, forested and open vegetation (lumping crops and

meadows). To incorporate the effect of human presence,

we included the minimal distance from the camera trap

to the nearest urbanized area.

Spatial scale consists of two components: grain, the

spatial resolution measured, and extent, the largest area

of investigation (Mayor et al., 2009). Here, we sought to

determine the characteristic scale that influences how an

organism responds to environmental variation, that is,

the optimal grain (Laforge et al., 2016; McGarigal et al.,

2016). Extent, in this case, is defined as the size of the

study area. Hence, we extracted candidate variables at dif-

ferent grains (Laforge et al., 2016) starting at the smallest

grain possible to calculate the proportion of land cover

from CORINE and increasing with one pixel in each

direction until both wild boar home ranges (mean:

4 km2, range: 1–7 km2; Fattebert et al., 2017) and roe

deer home ranges (mean: 0.8 km2, range: 0.5–1.4 km2;

Morellet et al., 2013) were included, with the largest grain

corresponding to some of the larger wild boar home

ranges measured near the Jura Mountains. We first

resampled all candidate variables to a pixel resolution of

100 9 100 m based on CORINE land cover.

Subsequently, we calculated for each focal 100 9 100 m

pixel the proportion of forest and open landscape and the

mean elevation, slope and ruggedness at grains having a

diameter of 300, 500, 900, 1500, 1900 and 2500 m with

the camera site as the central point. To account for the

fact that risk effects (e.g. from predation or human dis-

turbance) persist at different scales for different species,

we optimized the scale at which the species respond to

the distance to urban areas by using linear distance to

urban areas as well as with a varying exponential decay

function (Whittington et al., 2011) to model occupancy.

We used a base exponential decay (i.e. 1�exp(�29distance))

as defined by Whittington et al. (2011), which accommo-

dates for the fact that risk is highest at the source and

dissipates nonlinearly when moving away from the

source. Additionally to the linear distance, we varied the

exponential term to mimic a slow decay of risk effects

(i.e. risk effects persist over greater distances), an interme-

diate decay and a fast decay of risk effects (i.e. risk effects

persist over smaller distances only).

To determine the species-specific characteristic scale for

each variable, we contrasted univariate occupancy models

for each variable at the six predefined grains or four

exponential decays. We fitted univariate occupancy mod-

els (Ѱ) using the detection covariates that were identified

as most important in the previous step (p). We used an

information-theoretic framework to determine the best

grain for each variable through comparison of AIC values.

When several models were within ΔAIC < 2, we chose to

continue with the grain with the lowest AIC value as in

conventional RSF approaches (Fattebert et al., 2018;

Laforge et al., 2016; Zeller et al., 2017).

iii Scale optimized occupancy modelling

We checked for collinearity between explanatory vari-

ables at their optimal grain by calculating the variance

inflation factor (VIF) and correlations with a threshold

Spearman rho |rs| = 0.7 (Dormann et al., 2013). Occu-

pancy models assume that occupancy states remain con-

stant within the study period and that detection histories

between sampling sites are independent, that is, temporal

and geographical closure (MacKenzie et al., 2017). As the

minimal distance between camera traps was smaller than

the home range size of the focal species, sampling sites

are possibly spatially dependent. Moreover, as both spe-

cies are highly mobile, geographical closure at a sampling

site is unlikely. Hence, we interpreted occupancy esti-

mates as a reflection of both species’ space use (MacKen-

zie et al., 2017; Wevers et al., 2020). Although pooling

data across years can be considered a violation of the

temporal closure assumption, it was applied successfully

in other occupancy studies (Fuller et al., 2016; Linden

et al., 2017). Moreover, sampling occurred in a different

part of the Jura each year, and none of the sites were
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resampled in two different years, so we assumed negligible

impact of the violation of temporal closure.

Based on Prediction 2, we built a priori additive and

two-way interaction models (Tables S1 and S2) by com-

bining occupancy variables at their optimal grain (Ѱ)
using the detection covariates that were identified as most

important in the previous step (p). We used model selec-

tion to determine the top model through comparison of

AIC values. When several models were within ΔAIC < 2,

we used model averaging from the AICcmodavg package

(Mazerolle & Mazerolle, 2019) on the top models, showed

averaged coefficients (b) to determine the importance and

direction of the respective covariates and plotted the

response curve of each variable. We predicted occupancy

based on the averaged top models and projected the pre-

diction across the study area at the original 100 9 100 m

resolution using standardized covariates at their optimal

grain for each grid cell. Lastly, we assessed if scale-opti-

mization improved model inferences by contrasting

model selection and predictive power (pseudo-R2) of

individual models between occupancy models using

covariates at their optimal grain versus occupancy models

using covariates at one of the six predefined grains.

RESULTS

Detectability modelling: site-specific &
observation-specific covariates

For wild boar, detection probability was best

explained by the Effort + Trail Type model (Table 1).

Compared to camera traps placed on forest roads

(Reference category), detectability was lower when

camera traps were placed on hiking trails

(bhike = �0.71 � 0.31) and higher when camera traps

were placed on game trails (bgame = 0.61 � 0.32).

Detectability was positively influenced by effort

(beffort = 0.30 � 0.17).

Roe deer detectability was best explained by the

Camera trap Type model, although equally parsimo-

nious as the Effort + Camera trap Type model or the

Trail Type + Camera trap Type model (Table 1). We

kept the Camera trap Type model in all subsequent roe

deer occupancy models. Compared to when two

Ambush type camera traps (Reference category) were

combined, detectability was lower when two C1

type camera traps (bC1/C1 = �0.76 � 0.36), an

Ambush and C1 type camera trap (bambush/C1 =
�0.16 � 0.34), an Ambush and Capture type camera

trap (bambush/capture = �0.46 � 0.18), an Ambush, Cap-

ture and C1 type camera trap (bambush/capture/C1 =
�0.83 � 0.39) were deployed together and higher when

two Capture type camera traps (bcapture/capture =
0.08 � 0.16) or a Capture and C1 type camera traps

(bcapture/C1 = 0.03 � 0.33) were deployed together.

Scale optimization: site-specific covariates

For wild boar, the Open, Slope and Ruggedness variables

fitted the data best at a grain of 1900 m (Table 2). The

Forest and Elevation model fitted the data best at a grain

of 2500 m. Urban performed best with a fast exponential

decay function.

Table 1. Model selection for four detection covariates [Year of deployment, Camera trap Effort, Combination of Camera trap types (Cuddeback

Ambush, Cuddeback Capture or Cuddeback C1) and type of trail (forest road, hiking trail and game trail) on which the camera trap was

deployed] included in occupancy models with constant occupancy (Ѱ) fit to camera trap data of wild boar and roe deer collected in winters 2014

–2016 in the Jura Mountains, Switzerland.

Wild boar Roe deer

Model structure AIC ΔAIC Model structure AIC ΔAIC

~Effort + TrailType~1 986.86 0 ~CameraTrapType~1 2562.87 0

~TrailType~1 988.88 2.02 ~Effort + CameraTrapType~1 2563.49 0.62

~TrailType + CameraTrapType~1 989.80 2.93 ~TrailType + CameraTrapType~1 2563.75 0.88

~Effort~1 993.62 6.76 ~TrailType~1 2576.76 13.90

~Year + TrailType~1 995.35 8.49 ~1~1 2577.20 14.33

~1~1 995.74 8.88 ~Effort + TrailType~1 2577.50 14.64

~Effort + CameraTrapType ~1 996.52 9.65 ~Effort~1 2578.22 15.35

~CameraTrapType~1 998.24 11.37 ~Year 2579.80 16.93

~Year 1012.14 25.27 ~Year + CameraTrapType ~1 2584.17 21.30

~Year + CameraTrapType ~1 1012.14 25.28 ~Year + TrailType~1 2585.21 22.34

~~Year + Effort + TrailType + CameraTrapType~1 1016.74 29.88 ~Year + Effort + TrailType + CameraTrapType~1 2588.19 25.32

~Year + Effort ~1 1016.86 30.00 ~Year + Effort~1 2596.26 33.39

The ranking of variables influencing the detection of both species is shown with corresponding AIC and DAIC values.
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In roe deer, we found that the Open, Elevation, Slope

and Ruggedness models fitted best at a grain of 900 m,

while Forest fitted best at a grain of 1500 m (Table 2).

Urban performed best with a linear decay. In both species

however, several variables were equally parsimonious with

one or more scales (Table 2).

Occupancy modelling: site-specific
covariates

Correlations exceeded threshold values for forest and

open landscape (VIFWildBoarForest = 7.76, VIFWildBoarOpen =
6.74; VIFRoeDeerForest = 3.88, VIFRoeDeerOpen = 3.95;

Table 2. Model selection of univariate occupancy models with six different grain sizes for five explanatory variables of occupancy probability (Ѱ)
(open landscape, forest, elevation, ruggedness, slope) and four exponential decays for distance to urban areas. Models were fit to camera trap

data of wild boar and roe deer collected in winters 2014–2016 in the Jura Mountains, Switzerland, using previously identified detection covariates

(p) and varying occupancy (Ѱ).

Wild boar Roe deer

Model

name Model structure Grain AIC ΔAIC Model structure Grain AIC ΔAIC

Open ~TrailType + Effort ~ % Open 1900 982.82 0 ~CtType ~ % Open 900 2551.82 0

2500 983.98 1.16 1500 2552.54 0.72

1500 984.85 2.03 1900 2556.10 4.28

300 986.17 3.35 2500 2557.27 5.44

500 987.25 4.43 500 2563.02 11.20

900 988.55 5.73 300 2564.77 12.95

Forest ~TrailType + Effort ~ % Forest 2500 982.36 0 ~CtType ~ % Forest 1500 2554.00 0

1900 982.80 0.44 900 2554.21 0.21

1500 985.14 2.77 1900 2557.02 3.02

300 986.33 3.97 2500 2557.95 3.96

500 987.19 4.82 500 2563.29 9.29

900 988.60 6.24 300 2564.79 10.79

Elevation ~TrailType + Effort ~ mean

Elevation

2500 980.86 0 ~CtType ~ mean

Elevation

900 2560.91 0

1900 981.71 0.85 1500 2561.02 0.11

1500 982.21 1.35 500 2561.28 0.37

900 982.70 1.84 1900 2561.39 0.48

500 983.05 2.19 250 2561.42 0.51

300 983.15 2.29 2500 2561.80 0.89

Ruggedness ~TrailType + Effort ~ mean

ruggedness

1900 986.52 0 ~CtType ~ mean

Ruggedness

900 2564.55 0

2500 986.77 0.25 1500 2547.35 0.80

1500 987.24 0.71 1900 2549.45 2.90

900 988.44 1.92 2500 2551.10 4.55

500 988.73 2.21 500 2554.59 8.04

300 988.75 2.22 300 2559.43 12.88

Slope ~TrailType + Effort ~ mean slope 1900 986.58 0 ~CtType ~ mean Slope 900 2548.56 0

2500 986.79 0.21 1500 2549.17 0.60

1500 987.26 0.68 1900 2550.97 2.41

900 988.47 1.90 2500 2552.35 3.78

500 988.71 2.13 500 2555.72 7.15

300 988.79 2.21 300 2559.98 11.42

Urban ~TrailType + Effort ~ Distance to

Urban

Exponential

Fast

988.66 0 ~CtType ~ Distance to

Urban

Linear 2560.78 0

Exponential 988.73 0.08 Exponential

Fast

2561.96 1.17

Exponential

Slow

988.84 0.18 Exponential 2562.70 1.92

Linear 988.85 0.19 Exponential

Slow

2564.36 3.58

In the model structure column, detection covariates are shown on the left-hand side of the formula [i.e. Camera trap Effort, Combination of Cam-

era trap types (Cuddeback Ambush, Cuddeback Capture or Cuddeback C1) or Type of trail (forest road, hiking trail and game trail) on which the

camera trap was deployed] while occupancy covariates are shown on the right-hand side of the formula. The ranking of variables influencing the

occupancy of both species is shown with corresponding AIC and ΔAIC values.
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|rs| = 0.88) and for ruggedness and slope (VIFWildBoarRuggedness =
160.45, VIFWildBoarSlope = 162.09; VIFRoeDeerRuggedness = 169.83,

VIFRoeDeerSlope = 170.48; |rs| = 0.99). As we expected rugged-

ness and elevation to be more important features than slope

in driving habitat use of both species (Coulon et al., 2008;

Mysterud, 1999), we excluded slope from further analyses,

and hence, our Topography model only included elevation

and ruggedness in the analysis. As both forest and open

landscape were considered important habitats in driving

habitat use of wild boar and roe deer, we kept both but ran

separate models for each covariate.

Occupancy of wild boar was best explained by the

Forest 9 Elevation interaction model (Table S1), although

equally parsimonious as the Topo 9 Forest + Urban

model. Averaged b estimates indicated a significant effect

of the interaction between forest and elevation but not of

the interaction between forest and ruggedness nor the dis-

tance to urban areas (Table 3). Bivariate and response

plots (Fig. 1) illustrated modelled effects on wild boar

occupancy. Spatial projection (Fig. 3) showed that wild

boar occupancy was highest in the northern part of the

study area.

Roe deer occupancy was best explained by the

Topo 9 Open, Open 9 Ruggedness and Topo 9 Open +
Urban models (Table S2). Averaged b estimates indicated

a significant effect of the interaction between ruggedness

and open but a nonsignificant effect of the interaction

between elevation and open or the distance to urban

areas. Bivariate and response plots (Fig. 2) illustrated

modelled effects on roe deer occupancy. Spatial projection

(Fig. 3) showed that roe deer occupancy was high

throughout the Jura, except on the mountain ridges.

Modelling occupancy of either species at each of the six

a priori defined grains without performing scale optimiza-

tion resulted in different models being retained based on

AIC for several a priori chosen grains (Wild boar—

Table S3, Roe deer—Table S4). Additionally, the most

important factors driving occupancy at the optimal grain

appeared nonsignificant when modelled at some of the

six a priori grains (Wild boar—Table S5, Roe deer—
Table S6). Moreover, we found that our final scale-opti-

mized models performed better than models at some a

priori chosen grains based on R2 (Wild boar—Table S7,

Roe deer—Table S8).

DISCUSSION

We used a three-step approach to model scale-optimized

occupancy of roe deer and wild boar. Scale optimization

showed that the scale at which variation in the studied

environmental covariates influences wild boar and roe

deer habitat use corresponded to the species’ respective

home range sizes. Occupancy of both species was best

explained by a combination of land cover types, topogra-

phy and distance to urbanized areas. Our results illustrate

that modelling occupancy of both species at a priori cho-

sen scales without scale optimization would influence the

ecological interpretation on which environmental vari-

ables are most influential in driving the species’ habitat

use. We argue that incorporating scale optimization as

performed routinely with RSFs can improve inferences

from occupancy models by accounting for the characteris-

tic scale at which environmental factors drive habitat

selection, thereby revealing the appropriate scale at which

to model habitat use.

Detectability

As expected (Prediction 1), camera trap-placement tar-

geted at maximizing lynx observations (i.e. placing cam-

era traps on forest trails or roads) had an impact on the

detectability of both nontarget species, but using an

Table 3. Averaged parameter estimates, standard error and confidence intervals of variables (i.e. proportion of forest, proportion of open land-

scape, mean ruggedness, mean elevation and distance to urbanized areas) of top-ranked (i.e. within 2 ΔAIC) wild boar occupancy models

(Forest 9 Elevation and Topo1 9 Forest + Urban) and top-ranked roe deer occupancy models (Open 9 Ruggedness, Topo1 9 Open and

Topo1 9 Open + Urban). Models were fit on camera trap data of wild boar and roe deer in winters 2014–2016 in the Jura Mountains, Switzer-

land.

Wild boar Roe deer

Variable Averaged b estimates SE CI Variable Averaged b estimates SE CI

Forest 0.43 0.22 �0.01, 0.87 Open 0.54 0.24 0.07, 1.02

Elevation �0.70 0.24 �1.17, �0.22 Elevation �0.45 0.27 �0.98, 0.08

Ruggedness �0.03 0.14 �0.58, 0.39 Ruggedness �1.33 0.37 �2.04, �0.62

Elevation 9 Forest 0.54 0.24 0.07, 1.02 Elevation 9 Open �0.01 0.29 �0.59, 0.57

Ruggedness 9 Forest 0.09 0.19 �0.13, 0.77 Ruggedness 9 Open �1.10 0.39 �1.86, �0.33

Urban 0.10 0.21 �0.08, 0.83 Urban �0.11 0.19 �0.49, 0.27

1

The ‘Topo’ variable includes elevation and ruggedness.
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Figure 1. Response surfaces showing the effect of the interaction between forest and elevation, the interaction between forest and ruggedness

and the distance to urban areas on predicted occupancy (Ѱ) based on the averaged top models of wild boar in the Swiss Jura Mountains, winter

2014–2016. Optimal scale is indicated for each variable as subscript. The grey shaded area in the urban response plot represents confidence

intervals.
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Figure 2. Response surfaces showing the effect of the interaction between forest and elevation, the interaction between forest and ruggedness

and the distance to urban areas on predicted occupancy (Ѱ) based on the averaged top models of roe deer in the Swiss Jura Mountains, winter

2014–2016. Optimal scale is indicated for each variable as subscript. The grey shaded area in the urban response plot represents confidence

intervals.

ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 9

J. Wevers et al. Scale-Optimized Occupancy From Camera Trap by-Catch



occupancy framework allowed us to account for these

survey-related impacts on detectability. Additionally, con-

sistent with the general findings of Hofmeester et al.

(2019), detectability of wild boar and roe deer in our

study was influenced by general survey protocol features

(i.e. sampling effort and camera trap type). Our results

suggest a possible avoidance of roads for wild boar

(D’Amico et al., 2016) and emphasize the effect that com-

bining camera trap types with varying sensor sensitivity

can have on detectability. While we considered roe deer

detectability to be primarily influenced by the type of

camera traps deployed on a site, detection models

retained within AIC <2 indicated an additional effect of

effort and trail type.

Optimized occupancy

We expected that wild boar habitat use would be mostly

influenced by elevation, forest availability and human dis-

turbance (Prediction 2). We found that wild boar scale-

optimized occupancy was mostly influenced by the inter-

action between forest availability and elevation, with an

additional nonsignificant effect of the interaction between

forest availability and ruggedness and the distance to

urban areas (Fig. 1). Predicted wild boar occupancy was

lowest at high elevation sites with low forest availability

but increased with increasing forest availability or

decreasing elevation and peaked at high elevation sites

with dense forests as well as low elevation sites with

sparse forests. As our surveys were carried out in winter,

avoidance of high elevation sites without forest could pos-

sibly be explained by lower temperatures (Markov et al.,

2019), more snow (Thurfjell et al., 2014) and less food

availability, while the use of forests at higher altitudes

illustrates wild boar as a typical woodland species,

exploiting the canopy cover while foraging for resources

such as beech-nuts (Ballari & Barrios-Garcia, 2014). At

low elevation, greater use of sites with a higher availability

of open habitat could be explained by wild boar exploit-

ing left-overs from agricultural crops in the open land-

scape while hiding in forest fragments (Ballari & Barrios-

Garcia, 2014; Rutten et al., 2019).

For roe deer, we expected their habitat use to be

mainly driven by elevation, ruggedness, forest availability

and human disturbance (Prediction 2). We found that roe

deer scale-optimized occupancy was influenced mostly by

the interaction between ruggedness and the availability of

open landscape, with an additional nonsignificant effect

of the interaction between elevation and the availability of

open landscape and the distance to urban areas (Fig. 2).

Predicted roe deer occupancy was highest at flat open ter-

rain and decreases with increasing ruggedness. While wild

boar forages on left-over roots of crops, roe deer mainly

use the aboveground part of crops (Morellet et al., 2011).

As roe deer is one of the main prey species of lynx in the

Jura Mountains, its preference for open areas could be

explained by a predator avoidance strategy, although lynx

presence would more likely influence fine scale (i.e. John-

son’s [1980] third order) within habitat use rather than

home range placement or species distribution (Gehr

et al., 2017; Lone et al., 2014; Molinari-Jobin et al., 2002).

Scale optimization

Instead of choosing a scale a priori to model habitat selec-

tion, we pseudo-optimized a set of relevant scales to tease

out the characteristic scale of each variable (McGarigal

et al., 2016). While we modelled occupancy as a measure

of habitat use, the scale optimized approach enabled us to

identify the characteristic scale at which these environ-

mental variables drive habitat use. Wild boar occupancy

models performed better when landscape variables were

extracted at grains between 1900 to 2500 m, while roe

deer occupancy models performed better when landscape

variables were extracted at grains between 900 to 1500 m

(Prediction 3). Our results suggest that the environmental

features we considered in our models drive habitat use at

a scale corresponding to an average home range size of

each species, therefore being factors that influence home

range choice, analogous to Johnson (1980) second order

of selection (i.e. home range placement at the landscape

scale). Our results thus support general guidelines for

sampling occupancy at the home range scale of the study

species.

We found that our scale-optimized models performed

better than models fitted with a priori chosen grains,

either larger or smaller. Importantly, occupancy modelled

at a priori defined grains would lead to different ecologi-

cal interpretations of the species’ habitat use. We did find

that, for several variables, the best ranking grain did not

fit the data significantly better than one or more other

grains, but the best ranking grains were similar in scale,

for example, roe deer models at grains of 900 and

1500 m. This possibly indicates that the differences

between grains were simply not large enough, as shown

by comparison of mean, standard error, minimum and

maximum (Table S9). We argue that modelling habitat

use at an arbitrary predefined grain can lead to inaccurate

conclusions on which environmental variables and scales

are most influential in determining a species’ distribution,

consistent with Mayor et al. (2009).

We chose to cap our range of grains to the grain of the

original sampling grid designed for lynx, which corre-

sponded to the upper limit of measured wild boar home

ranges in the Jura Mountains. The characteristic scale for

several of the variables studied corresponded to the largest
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Figure 3. Spatial projection of wild boar (top) and roe deer (bottom) probability of presence, based on the averaged top occupancy models,

across the Jura Mountains, Switzerland, winters 2014–2016. Camera trap sites are indicated with open circles for nondetections and opaque

circles for detections of the respective species.
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grain measured, possibly indicating that they might be

affecting species occurrence at an even larger scale (Jack-

son & Fahrig, 2015). Moreover, by performing scale opti-

mization with univariate models only, we could not

account for the fact that interactions between variables

could influence the scale at which these variables drive

habitat use nor for the fact that a variable could influence

habitat use at multiple scales (Frishkoff et al., 2019).

Being less complex, our approach is an easy to use exten-

sion of the typical two-step occupancy approach using

Unmarked. Hence, by introducing scale optimization bor-

rowed from the RSF literature, our approach provides a

simple, yet effective improvement to modelling habitat

use that is intuitive to implement for single species, single

season occupancy modelling.

The main focus of this study was to incorporate the

characteristic scale in modelling the habitat use of wild boar

and roe deer in an occupancy framework. We see added

value of scale optimization in modelling by-catch data from

camera trap surveys designed to target one specific species.

By demonstrating that the optimal grain corresponds to the

respective home range of wild boar and roe deer, we sug-

gest that, in our case, we modelled the home range place-

ment process (Johnson, 1980—second order). Optimizing

the characteristic scale of each candidate variable prior to

occupancy modelling therefore ensured that, regardless of

the spacing and placement of the camera traps in the origi-

nal sampling design, habitat use at the camera sites was

modelled at the relevant scale for the factors driving occur-

rence of these two nontarget species in the study area.

CONCLUSION

Being able to predict which environmental factors drive

species distribution is essential for the design of evidence-

based management and conservation policies. By firstly

determining the characteristic scale of candidate environ-

mental variables and subsequently incorporating these in

a multiscale occupancy model, we can reach an optimal

match between the studied environmental variables and a

species’ requirement. We showed that large land cover

features influenced wild boar and roe deer occupancy in

our study at relatively coarse grains and that habitat type

and topography seemed to be the key drivers in habitat

use at the home range scale. Specifically, we found that

the winter distribution of wild boar was primarily depen-

dent on a trade-off between elevation and forest habitat.

Roe deer occupancy was mostly directed away from

rugged terrain while being modulated by the availability

of open landscape. We argue that by incorporating the

characteristic scale into occupancy models when analyzing

camera trap data, we improved our habitat selection

inferences by combining the strength of occupancy

modelling in correcting for detection bias with the eco-

logical relevance of scale optimization borrowed from the

RSF literature.
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Table S1. Model selection for wild boar occupancy with

previously defined detection variables held constant, Jura

Mountains, Switzerland, winters 2014–2016. The ranking

of variables influencing the occupancy is shown with cor-

responding AIC, ΔAIC, and R2 values.

Table S2. Model selection for roe deer occupancy with

previously defined detection variables held constant, Jura

Mountains, Switzerland, winters 2014–2016. The ranking

of variables influencing the occupancy is shown with cor-

responding AIC, ΔAIC and R2 values.

Table S3. Model selection for wild boar occupancy with

previously defined detection variables held constant, Jura

Mountains, Switzerland, winters 2014–2016. The ranking

of variable combinations influencing wild boar occupancy

is shown for each a priori chosen grain sizes with corre-

sponding AIC, ΔAIC and R2 values.

Table S4. Model selection for roe deer occupancy with

previously defined detection variables held constant, Jura

Mountains, Switzerland, winters 2014–2016. The ranking

of variable combinations influencing roe deer occupancy

is shown for each a priori chosen grain sizes with corre-

sponding AIC, ΔAIC and R2 values.

Table S5. Parameter estimates, standard error and confi-

dence intervals of the averaged top ranked wild boar occu-

pancy models (Forest 9 Elevation and Topo 9 Forest

+ Urban) at the optimal grain contrasted with a priori grain-

sizes, the Jura Mountains, Switzerland, winters 2014–2016.
Table S6. Parameter estimates, standard error and confi-

dence intervals of the averaged top ranked roe deer occu-

pancy models (Open 9 Ruggedness, Topo 9 Open and

Topo 9 Open + Urban) at the optimal grain contrasted

with a priori chosen grain size, Jura Mountains, Switzer-

land, winters 2014–2016.
Table S7. Model comparison of the top ranked wild boar

occupancy models, Forest 9 Elevation (~Effort + Trail
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Type ~ Forest2500 9 Elevation2500) and Topo 9 Forest

+ Urban (~Effort + Trail Type ~ Forest2500 9 Elevation2500
+ Forest2500 9 Ruggedness1900 + DistUrbanExpFast) between

grains in Jura Mountains,, Switzerland, winters 2014–2016.
Table S8. Model comparison of the top ranked roe deer

occupancy models, Open 9 Ruggedness (~Camera

Trap Type ~Open900 9 Ruggedness900), Topo 9 Open

(~Camera Trap Type ~Open900 9 Ruggedness900 + Open900
9 Elevation900) and Topo 9 Open + Urban (~Camera

Trap Type ~Open900 9 Ruggedness900 + Open900 9 Eleva-

tion900 + DistUrbanLinear) between grains in Jura Moun-

tains, Switzerland, winters 2014–2016.
Table S9. Summary statistics of the distribution of covari-

ates in the Swiss Jura Mountains, winters 2014–2016. The
average, minimum, maximum and standard error are

shown in meter for distance to urban areas and elevation,

degrees for slope, difference in elevation for ruggedness,

and proportions for open landscape forest and forest.
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